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Abstract

This paper stresses on the treatment of bodies of
revolution by the finite element method (FEM) with edge
elements. It clearly states an inherent difficulty on the
axis of rotation specially when considering the first
azimuthal mode. We propose a formulation which is not
a straightforward application of standard edge elements

in FEM. It takes explicitly into account a not very well
known axis condition with the help of an axisymmetrical-
designed edge element. Results on dielectric resonators
are given and compared to measurement and to
calculations from a 3D edge-based FEM code.

Introduction

Many microwave devices exhibit a rotational symmetry
like cylindrical dielectric resonators- or antenna horns.
From a computational point of view, whenever a
symmetry occurs, it is worth to benefit from it by
reducing the computational domain. In axisymmetric
structures, the 3D domain reduces to the 2D meridian
plane. We choose here to apply a Finite element method
(FEM) with edge elements enabling a robust analysis of
complex inhomogeneous structures.

In the past, the FEM for axisymmetrical bodies was based
mainly on the coupled azimuthal potentials [1] or the
double curl equation [2] with the use of nodal elements.
In these previous works, the treatment of an artificial
singularity on the axis due to the curl expression in a
cylindrical coordinate system has never been clearly
pointed out. We will recall here the conditions that
prevail on the axis and which solve the apparent
singularity. The use of edge elements is now well
admitted as a way to get robust algorithms. However,
their application is not so straightforward particularly for

CH3577-4/95/0000-0285$01.00 © 1995 IEEE

the first Fourier mode case and we use instead an
axisymmetrical-designed edge element [3]. Although we
will derive the formulations for all the Fourier modes, we
will focus on the first mode which corresponds for
example to the TE{; mode of cylindrical waveguide.
Hollow cylindrical cavities and dielectric resonators are
provided to demonstrate the validity and the efficiency of
the method.

Electromagnetic Fields In Axisymmetric
Structures

z : axis of rotation

Figure 1. : Body of revolution and 2D meridional
section

Let's consider a body of revolution with a cylindrical
coordinate system (r, @, z) (Fig.1). Due to the symmetry
of revolution and assuming an axisymmetrical
inhomogeneous medium, the electric field can be
expanded in Fourier series :

E(r,0,2)=¢, (r,2)+e,(r,2)®
+ Z(e','n (ryz)sinne + e; (r,z) cosn@d) (1)
n2l
+ 2 (e, (r,z)cosn@ +e," (r,z)sin no®)

nzl

where efn" and e(f" are the electric field in the meridian

plane and the azimuthal component of the n-th Fourier
mode respectively. This expansion used in the Maxwell
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equations shows that each Fourier mode is decoupled
from each other. Without loss of generality, we can only
consider the modes of the form
(e,, sinn®+e, cos n@®). For the @-independent
mode, i.e. n=0, the fields decouple further into TE
(€2 =0) and TM (eg = 0) mode.

On the axis, we can distinguish [4] three kinds of

conditions depending on the mode order :
0

1) n=0 : e, is polarized along the axis z and
0 0=

ep(r=0,2)=0

2) n=1: € is purely radial, el (r=0,2).2=0, and

e (r=0.2).F= e(r=0,2)
3) n>1 : all the fields vanish;
em(r=0,2)=0 , ¢(r=0,2=0.

The seemingly odd condition for n=1 expresses that the
field may be polarized on the axis like the TEj1 mode of
a cylindrical waveguide. It is that situation that interests
us for the theory and the application. On the axis, we
have :

e,, sin Q+e, cos O = e, . Fsin QF + ¢, cos P
— 1 ~ . ~ ~
= (e,,.r)(sin @r +cos Q)

= (e, - D)y
@

We will see in the sequel that these conditions are
necessary to compensate the 1/r singularity which will
occur when the curl of the field is taken.

Axisymmetric Finite Element Formulation

For the sake of simplicity, we will consider a cavity
closed by perfect conductors, V =Qx[0,27]. Each
Fourier mode verifies the weak variational form [5,6] :

2n
[ | (--culE -curl E~ K€ E -E)rdrdzde =0
0 r

3)
The curl of the electric field for each mode is in
cylindrical coordinate :

1) n=0:
0y 0
curl(e, ) =curl e, for the TM mode and
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curl(e;® ) = 1 grad(re ) X @ for the TE mode

“
2)n21:
curl(e;, sinng+e, cosneP ) =

(—2(e), X P)+(Le T +grad(e;)) X §) cosn®

+curl, e, sin nQP
()

where Curl(p and grad are the usual curl and gradient

operators in a plane with Cartesian coordinates (r,z).

Equation (3) then reduces to :

1) n=0:
2 J. 1 0 ’ _k2 0 s d d _ 0
i Q(M = grad(req,)grad(req, )—k’g e e, )rdrdz=

(6)

for the TE case

27‘CJQ (Hicurl(p e, curl e, —k’¢.e)e; )rdrdz =0
@)

for the TM case

2)n=1:

1
n j (—curlE" - curl B — k¢, E"E")rdrdz = 0 (8)
2y,
Let us now discuss our formulation for the n=1 case. The
natural idea is to expand the electric field with edge

elements, w,, for the meridian field eln and nodal
elements, A ;» for the azimuthal field etlp. But according

to (5) and (8), this leads to undefined integrals due to a
remaining 1/r singularity. Furthermore, we have to
enforce the field tangential to the axis to be zero, which
is very surprising because we need not do it in a 3D
formulation. We could perform a numerical integration
and let the variational form determines the fields. But we
prefer to use a new axisymmetrical edge element [3]
which takes into account the axis condition for n=1. We
can see indeed that the axis condition for n=1 is
necessary to overcome the singularity. The degrees of
freedom (dof's) of this finite element upon a triangle are :

D) Three dof's defined on the vertices of the triangle,
s;, i=1,3, as the values of the azimuthal components

1
1 e, (s;)

. Three dof's defined on the edges, a;, i=1,3, as the
following circulations : J.%(e;)f‘—-ein). da

&4



The simplest way to describe this finite element may be
to consider a change of variable, we define :

1 _ ns
e, =er—-rE, . ©

The unknown fields will be expanded as :

E,= YEW, (10)
ecf{edges}
e,= e, (11)

se{vertices}
where W,, andA, are edge and nodal elements
respectively. The electric field of the first mode can be
written as:
1 1A . 1 A
E, =(e,r—rE,,)sin@+e,0cos@

=( Y ert-r Y Ew,)sing+ Y ek fcose

se{vertices} ee{edges} se{vertices}

(12)

With (12), the apparent singularities disappear in the
weak form. It is not necessary to enforce a boundary
condition on the axis. '

Let's now consider the modes 1 # 1. For the TM mode,
edge elements can be directly used without any
modification in equation (7). For the TE mode, it is well
known that the change of variable, e, = ré(p, cancels the
singularity in equation (6). Unlike the authors of [3] who
have generalized their n=1 finite element for n>1, which
corresponds to the following change of variable,
E,  =—%e, +-1;e$f', we propose, simply according to
the axis condition for n>1, the use of edge and nodal
elements for the change of variable : €, =re€, and

no__ K
€g =TE,.
Results

Hollow cylindrical waveguide

The formulation is tested on a hollow cylindrical cavity
as the analytical solutions are available. The cavity's
radius and height are 5 mm and 5 mm respectively. We
can see the good convergence of the results in the table I.
Dielectric resonators

The dielectric resonator is placed in a cylindrical cavity
with the help of a rexolite support (Fig.2) : Dc=30 mm,
Hc=21 mm, Dr=14.5 mm, Hr=9 mm, h=2 mm.

P—' €r=37

el

z :rotation axis

Figure 2 : Meridian cross-section of the dielectric
resonator

The results are reported in the table II. We can observe a
very good agreement with measurement data and with
numerical results calculated using a 3D FEM code with
edge elements [6]. With lower than 1000 unknowns, the
axisymmetric FEM provides nearly the same results as
the 3D FEM one. The field patterns in a meridian plane
for the two modes we called EHy and EHyj are displayed
in Fig.3.

Analytical results Numerical results
MODE ke (m'I) 380 unknowns 880 unknowns

ko (m‘l) error (%) k. (m’l) error (%)
TEq114 728.45 732.10 0.50 729.70 0.17
T™™110 766.34 762.70 0.47 765.20 0.15
T™ 111 991.12 992.40 0.13 991.60 10.05
TE191 1237.74 - 1246.00 0.67 1240.00 0.18

Table I : Comparison of resonance frequency for the cylindrical waveguide
MEASUREMENTS NUMERICAL RESULTS
3D FEM (~5000 unknowns) Axisymmetric (n unknowns)
MODES ko (mD) ko (m]) error(%) k, (m 1) error (%)
EHI 82.10 82.31 0.3 82.31 n=370 0.3
EHII 92.99 93.62 0.7 93.99 n=390 | 1.07
03.69 n=714 0.75

Table II : Comparison of resonance frequency for the dielectric resonator
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Figure 3 : The electric field in the meridian plane (half
of the cavity) for the EHI (a) and EHII (b) modes

Conclusion

We have derived the appropriate formulation with edge
elements for bodies of revolution. The first Fourier mode
has been specially treated with the use of an
axisymmetrical-designed edge element. The efficiency of
the method has been shown with an example of a
dielectric resonator.
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