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Abstract

This paper stresses on the treatment of bodies of
revolution by the finite element method (FEM) with edge
elements. It clearly states an inherent difficulty on the
axis of rotation specially when considering the first
azimuthal mode. We propose a formulation which is not

a straightforward application of standard edge elements

in FEM. It takes explicitly into account a not very well
known axis condition with the help of an axisymmetrical-

designed edge element. Results on dielectric resonators
are given and compared to measurement and to
calculations from a 3D edge-based FEM code.

Introduction

Many microwave devices exhibit a rotational symmetry
like cylindrical dielectric resonators or antenna horns.
From a computational point of view, whenever a
symmetry occurs, it is worth to benefit frclm it by
reducing the computational domain. In axisymmetric

structures, the 3D domain reduces to the 2D meridian
plane. We choose here to apply a Finite element method

(FEM) with edge elements enabling a robust analysis of
complex inhomogeneous structures.

In the past, the FEM for axisymmetrical bodies was based

mainly on the coupled azimuthal potentials [1] or the
double curl equation [2] with the use of nodal elements.
In these previous works, the treatment of an artificial
singularity on the axis due to the curl expression in a
cylindrical coordinate system has never been clearly
pointed out. We will recall here the conditions that
prevail on the axis and which solve the apparent
singularity. The use of edge elements is now well

admitted as a way to get robust algorithms. However,
their application is not so straightforward particularly for
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the first Fourier mode case and we use instead an
axisymmetrical-designed edge element [3]. Although we
will derive the formulations for all the Fourier modes, we
will focus on the first mode which corresponds for
example to the TEl 1 mode of cylindrical waveguide.
Hollow cylindrical cavities and dielectric resonators are
provided to demonstrate the validity and the efficiency of
the method.

Electromagnetic Fields In Axisymmetric
Structures
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z: asis of rotation

Figu;e 1.: Body of revolution and 2D meridional
section

Let’s consider a body of revolution with a cylindrical
coordinate system (r, q), z) (Fig. 1). Due to the symmetry

of revolution and assuming an axisymmetrical
inhomogeneous medium, the electric field can be
expanded in Fourier series :

E(r, q,z) = e~(~,z)+ej(~,z)o

+~(e~(r, z)sinn(p+e~(r, z)co.sn@) (1)
n>l

+~(e;n(r, z)cosnq+e;n(r, z)sinmpij)
nzl

where e; and e~n are the electric field in the meridian

plane and the azimuthal component of the n-th Fourier
mode respectively. This expansion used in the Maxwell
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equations shows that each Fourier mode is decoupled
from each other. Without loss of generality, we can only
consider the modes of the form

(e; sinmp -t e; cosrz@), For the ~-independent

mode, i.e. n=O, the fields decouple further into TE

(e: = O) and TM (e; = O) mode.

On the axis, we can distinguish [4] three kinds of
conditions depending on the mode order:

1) n=O : e: is polarized along the axis z and

e$(r=O, z)=O

2) n=l : e; is purely radial, e~ (r = O,z).2 = O, and

e~L(r=O, z).i=e&(r=O, z)

3) n>l : all the fields vanish;

e~(r=O, z)=O ‘ ‘$(r=o’z)=o

The seemingly odd condition for n=l expresses that the
field may be polarized on the axis like the TEl 1 mode of
a cylindrical waveguide. It is that situation that interests
us for the theory and the application. On the axis, we
have:

We will see in the sequel that these conditions are
necessary to compensate the I/r singularity which will
occur when the curl of the field is taken.

Axisymmetric Finite Element Formulation

For the sake of simplicity, we will consider a cavity
closed by perfect conductors, V = Q X [0, 2z]. Each

Fourier mode verifies the weak variational form [5,6] :

2n

JJ( ~curl E’ .curl E – k2&,E’oE)rdnizdq= O
L?, P’,

(3)
The curl of the electric field for each mode is in
cylindrical coordinate :

1) n=O:

CUd(e~ ) = Curl. e; for the TM mode and

curl(e~o ) = ~ grad(rej ) X @ for the TE mode

(4)
2)n>l:
curl(e~ sin q + e; cos n(pij ) =

+ curlq e; sin n(pij

(5)
where curl~ and grad are the usual curl and gradient

operators in a plane with Cartesian coordinates (r,z).

Equation (3) then reduces to :

(6)
for the TE case

(7)

for the TM case
2)n>l:

J~*(-&rlEn.CUrl E’ – k2%EnE’)~~~~Z = O (8)
r

Let us now discuss our formulation for the n=l case. The
natural idea is to expand the electric field with edge

elements, We, for the meridian field e; and nodal

elements, ~~, for the azimuthal field e:. But according

to (5) and (8), this leads to undefined integrals due to a
remaining l/r singularity. Furthermore, we have to
enforce the field tangential to the axis to be zero, which
is very surprising because we need not do it in a 3D
formulation. We could perform a numerical integration
and let the variational form determines the fields. But we
prefer to use a new axisymmetrical edge element [3]
which takes into account the axis condition for n= 1. We
can see indeed that the axis condition for n=l is
necessary to overcome the singularity. The degrees of
freedom (dot%) of this finite element upon a triangle are :

● Three dot’s defined on the vertices of the triangle,
si, i= 1,3, as the values of the azimuthal components

: e~(si )

● Three dofs defined on the edges, ai, i= 1,3, as the

following circulations : J(~ e~;–e~).dq
4
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The simplest way to describe this finite element may be

to consider a change of variable, we define:

e: = e&- rEmq. (9)

The unknown fields will be expanded as :.
(lo)

(11)

where we, and~~ are edge and nodal elements

respectively. The electric field of the first mode can be
written as:

E; = (e$ – rE~9)sinq + e&@cosq

(12)

With (12), the apparent singularities disappear in the
weak form. It is not necessary to enforce a boundary
condition on the axis.

Results
HO11OWcylindrical waveguide
The formulation is tested on a hollow cylindrical cavity

as the analytical solutions are available. The cavity’s

radius and height are 5 mm and 5 mm respectively. We
can see the good convergence of the results in the table I.
Dielectric resonators
The dielectric resonator is placed in a cylindrical cavity
with the help of a rexolite support (Fig.2) : Dc=30 rum,
Hc=21 mm, Dr=14.5 mm, Hr=9 mm, h=2 mm.

z :rotation axis

Let’s now consider the modes n # 1. For the TM mode,

edge elements can be directly used without any
modification in equation (7). For the TE mode, it is well

known that the change of variable, e~ = r?q, cancels the

singularity in equation (6). Unlike the authors of [3] who
have generalized their n=l finite element for n;.1, which
corresponds to the following change of variable,

En =
m

– ~ ej + ~ e$, we propose, simply according to

the axis condition for n>l, the use of edge and nodal

elements for the change of variable : e; = r6~ and

Figure 2: Meridian cross-section of the dielectric
resonator

The results are reported in the table II. We can observe a
very good agreement with measurement data and with
numerical results calculated using a 3D FEM code with
edge elements [6]. With lower than 1000 unknowns, the
axisymmetric FEM provides nearly the same results as
the 3D FEM one. The field patterns in a meridian plane
for the two modes we called EH1 and EH1l are displayed

in Fig.3.

Analytical results Numerical results

MODE k. (m-l) 380 unknowns 880 unknowns

k. (m-l) error (%) k. (m-l)

m~ll

error (%)

728.45 732.10 0.50 729.70 0.17

TMlln 766.34 762.70 0.47 765.20 0.15

TMlll 991.12 992.40 0.13 991.60 0.05

TElgl 1237.74 1246.00 0.67 1240.00 0.18

Table I : Comparison of resonance frequency for the cylindrical waveguide

MEASUREMENTS NUMERICAL RESULTS

3D FEM (-5000 unknowns) Axisymrnetric (n unknowns)

MODES kn (m-l) k. (m-l) error(9Z0) lkn(m-l) error (Ye)

EHI 82.10 82.31 0.3 82.31 n=370 0.3

EHII 92.99 93.62 0.7 93.99 n=390 1.07
!93.69 n=714 0.75

Table II : Comparison of resonance frequency for the dielectric resonator

287



Acknowledgments

The authors would like to
CEAICESTA and G. Le Meur
for very helpful discussions.

thank P. Lacoste of
of IN2P3-CNRS, Orsay,

References

[1] M.A. Morgan and K.K. Mei, “Finite-element

computation of scattering by inhomogeneous penetrable

bodies of revolution”, IEEE Trans. on AP, VOI,27, No.2,
March 1979, pp.202-214.
[2] A. Khebir, J. D’Angelo and J. Joseph, “A new finite

element formulation for RF scattering by complex bodies
of revolution “, IEEE Trans. on AP, VOI.41, No.5, May

1993, pp.534-541.
[3] P. Lacoste and Y. Gay, “A new family of finite

elements for Maxwell-Fourier’s equations”, Mathematical
a) and Numerical aspects of wave propagation phenomena

SIAM 1991, pp.746-749.
[4] J. Van Bladel, Electromagnetic Fields, revised
printing, Springer-Verlag.
[5] M.F.Wong, O.Picon and V.Fouad Hanna, “three

dimensional finite element analysis of N-port waveguide
junctions using edge elements”, 1992 IEEE MTT-S

Digest, pp.4 17-420
[6] M.F. Wong, “M6thode des 616ments finis mixtes 3D

appliqu6e h la caract6risation
microondes et millim6triques”,
1993.

des composants passifs
Ph. D thesis, Paris VII,

b)

Figure 3: The electric field in the meridian plane (half
of the cavity) for the EHI (a) and EHII (b) modes

Conclusion

We have derived the appropriate formulation with edge
elements for bodies of revolution. The first Fourier mode
has been specially treated with the use of an
axisymmetrical-designed edge element. The efficiency of
the method has been shown with an example of a
dielectric resonator.
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